α , 379	atinlay example, 15
π, 27, 93, 403	autoboxed, 74
-unboxing, 74	autoboxing, 74, 493
o,	5 , ,
abstract base class, 149, 151, 160, 408,	balloon, helium-filled, 189
505	bank account, 11
AbstractGenerator example, 152	BankAccount example, 11
AbstractCard example, 156	base case, recursive, 95
abstraction, 5, 6, 151	base type, 409
data, 5	baseclass, 504
procedural, 5	big- Ω , 112
access, random, 179	big-O notation, 81–92
accessors, 13	binary search, 259–264
adjacency list, 416	binary search tree, 343
adjacency matrix, 410	binary tree, 279
adjacent, 404	complete, 280
algorithm, greedy, 429	full, 279
allocation, dynamic, 179	bound, upper, 44
Amend, Bill, 277	boundary cases, 212
analysis	breadth-first, 251
amortized, 229, 329, 333	bubble sort, 120
asymptotic, 81–92	BubbleSort example, 119
average-case, 90	C: 252
best-case, 90	C++, xi, 253
big-O, 81, 82	cache, 99
worst-case, 90	Calc example, 282
Analysis example, 85	call
ancestor, 277	frame, 222
proper, 279 and	stack, 222
	Carroll Lewis 210
logical, 262	Carroll, Lewis, 219
short-circuiting, 262	cast, 143, 256, 492 child, 279
and-gate, 333 API, 45	left, 279
Application Program Interface, 45	right, 279
application, scalable, 43	
array, 43	Circuit example, 334 class, 5, 8
associative, 369	abstract, 149, 191, 408–410, 505
two-dimensional, 411	concrete, 408, 505
assertion, 33–37	dynamic loading of, 507
association, 14, 369	encapsulation, 507
associative array, 369	extension, 408
associative memory, 66	hierarchy, 513
associative structure, 345–348	importing, 11
asymptotic, 92	instance of, 5, 8
asymptotic analysis, 81–92	program is a, 489
adjumptotic analysis, or 72	program to a, 107

class cast exception, 143	data types, parameterized, 72
clone, of object, 211	dead code, 91
clustering, 377	degree, 279
primary, 377, 378	deprecated, xiii
secondary, 377	descendant, 279
code reuse, 235	proper, 279
CoinPuzzle example, 231	design
collection classes, 511	method, 149–160
collections, 511–512	properties of, 108–110
comment, 33–37	deterministic, 134
political, 2	dictionary, 369
comparable, 253	Dijkstra example, 432
association, 256	disjoint, 277
ratio, 254	documentation, 513–516
comparator, 140–142	Dodgeson, Charles Lutwidge, 219
compare, 253	doubly linked list, 201
comparing values, 197	Doyle, Arthur Conan, Sir, 441
compile-time, 69	Drake, Milton, 489
CompInsSort example, 142	dummy nodes, 215
complexity, 1, 81	dynamic programming, 99
of method, 235	
space, 82–92	edge
time, 82–92	canonical, 418
component, 404	of tree, 277
connected, 404	weighted, 428
strongly connected, 404	element
concrete class, 505	current, 164
connected component, 404	encapsulation, 6–8
ConstantGenerator example, 153	class, 507
	package, 507
constructive toys, 1	encoding, 241, 303
constructor, 10	
copy, 59, 373	unicode, 492
container types, 72	energy, 195, 201, 258
contract, 6	enumeration, 161
interface viewed as, 6, 25, 181	live, 162
control	equals, default, 13
flow of, 222	example
structures, 8, 161	AbstractGenerator, 152
correctness, proof of, 102	AbstractCard, 156
craftsmen, 81	Analysis, 85
cycle, 404	atinlay, 15
	BankAccount, 11
DAG, 404	BubbleSort, 119
Dahl, Roald, 315	Calc, 282
data	Card, 155
comparing, 253	Circuit, 334
declaring protected, 25, 515	CoinPuzzle, 231
data abstraction, 6–7	CompInsSort, 142
data structure, 1, 8	ConstantGenerator, 153
data types, generic, 72	Dijkstra, 432
· · · · · · · · · · · · · · · · · · ·	J, 10 -

T 7 0	m a . 406
Example, 2	TopoSort, 426
Fibo, 106	Unique, 182
Floyd, 428	UniqueFilter, 170
FullPostage, 99	Warshall, 427
Generator, 152	WordFreq, 48
HelloWorld, 162, 164	WordList, 19, 23, 47
HexBoard, 313	Example example, 2
HexMove, 313	example, icon for, xii
HTML, 251	extensible, 70
Huffman, 303, 304, 317	extension of class, 408
Huffman2, 317	
Index, 396	Fibo example, 106
InfiniteQuestions, 288	Fibonacci numbers, 106
InsertionSort, 125	fields, 8
LinkedList, 216	FIFO, see also queue
LongWords, 70	filter, 170
LongWords2, 71	finger method, 192
LongWords3, 78	Floyd example, 428
LSystem, 56	foreach, 500
MCST, 430	forest, 277
MergeSort, 127	format, 496
nim, xii	Fox, Jason, 277
ParkingLot, 183	free list, 183-186, 410
ParkingLot2, 271	friction, 110
Pedigree, 280	definition, 108, 110
PFGenerator, 168	in heaps, 320
PhoneBook, 138, 143	Frost, Robert, 507
PinochleCard, 159	FullPostage example, 99
Player, 314	function, see also method
PokerCard, 158	functions, static, 322
PrimeGenerator, 154	
QuickSort, 131, 222	garbage collection, 199
RadixSort, 135	garbage collector, 189, 494
Ratio, 8, 254	gate delay, 334
RBSymTab, 362	Geisel, Theodor Seuss, 5, 369
Reachability, 422	generator, 152–155
Reader, 248	as iterator, 167–170
Rect, 20	Generator example, 152
Recursion, 94, 102	generic, xv
RecursiveIterators, 298	generic class, 69, 72
RecursivePostage, 98	Gillespie, Haven, 179
SelectionSort, 122	grammars, 57
Sort, 265	graph, 403–434
sqrt, 34	acyclic, 404
StringReader, 43	adjacency list, 416
StringVector, 71	arc, see also graph, edge
SymbolTable, 249	complete, 404
SymMap, 369	dense, 416
SymTab, 346	directed, 403
Token, 248	directed acyclic, 404
	-

edge, 403	InfiniteQuestions example, 288
node, see also graph, vertex	infix, 290
sparse, 416	information theoretic limit, 91
sub-, 403	inheritance, 408
transitive closure, 427	multiple, 506
undirected, 403	insertion sort, 125–127
vertex, 403	InsertionSort example, 125
Guthrie, Arlo, 69	instantiation, 442
Guarrie, Tirio, 07	interface, 5, 6, 22–24, 149, 504
Hangman, 18	abiding by, 25, 515
hash code, 385–392	design of, 149
hash function	implementation, 190
perfect, 377	implementing, 23
rehashing, 377	list, 180
hash table, 374–392	point-of-view, 507
bucket, 375, 376	program, 19
collision, 377	Internet, see also Web
double hashing, 378	intractable, 85
external chaining, 383–385, 392	inverter, 333
linear probing, 378	iterator, 161–173
load factor, 379	filtering, 170–172
open addressing, 375–383, 392	is read-only, 211
ordered linear probing, 400	potato, 161
primary clustering, 378	potato, 101
probe count, 392	Java, xi, 1, 5, 489–506
rehashing, 377	jit compiler, 117
reserved value, 377	Johnson, Crockett, 149
hashing, 375	just-in-time compiler, 117
heap, 308, 319	just in time compiler, 117
complete, 320	key
skew, 329	in association, 369
height, 279	, ,
black, 361	L-systems, 56
of node, 279	language, purpose of, 69
of tree, 279	Lao Tzu, 81
HelloWorld example, 162, 164	larger, 123
HexBoard example, 313	length of path, 279
HexMove example, 313	level, 279
hierarchy, 513–515	LIFO, see also stack
HTML example, 251	linear structures, 219–246
Huffman encoding, 303	LinkedList example, 216
Huffman example, 303, 304, 317	list, 179–211
Huffman2 example, 317	abstract, 186
rarimani champie, 017	add, 179
icons, marginal, xii	adjacency, 416–422
implementation, 6, 19	circular, 206–209
point-of-view, 507	concept, 179
incident, edge to vertex, 403	doubly linked, 201–206
Index example, 396	head, 179
induction, mathematical, 81, 101–106	interface, 180
,	,

is a graph, 403	new operator, 12, 188
iterator, 209–211	nim example, xii
remove, 179	node
singly linked, 188–201	degree, 279
tail, 179	depth, 279
load factor, 383	interior, 279
logic gates, 333	level, 279
LongWords example, 70	parent, in tree, 277
LongWords2 example, 71	sibling, 279
LongWords3 example, 78	of tree, 277
LSystem example, 56	nondeterministic, 134
man 260 200	null, 189
map, 369–398	Ookland Bon 480
ordered, 392–398 Mars, life on, 191	Oakland, Ben, 489 object, 5, 8, 489
matrix, 60–63	general, 345
adjacency, 410–416	model of, 7–8
symmetric, 66, 410	object orientation, 5–25
triangular, 66	in languages, 5 terminology of, 8–11
maze	7 7
finish cell, 242 start cell, 242	object-oriented programming, 5–25 objects, comparable, 253–258
•	octtrees, 308
mazes solving, 242–244	optimization, 91
9.	ordered
McCloskey, Robert, 119 MCST example, 430	list, 267
mechanics of data structures, 6	-
median, 259	map, 392–398 vector, 259
•	ordered structure, 144
memory leak, 194	·
mention, 403 merge, 127	ordered structures, 253–272 overriding methods, 357
	overriding methods, 357
mergesort, 127–131 MergeSort example, 127	overriding operators, 233
message, 26, see also method	package, 11, 489
method, 8, 490	default, 509
calling, 5	encapsulation, 507
calls, 8	user, 509
destructive, 213, 330	ParkingLot example, 183
helper, 318	ParkingLot2 example, 271
nondestructive, 194	partially ordered, 140
postcondition, xii	Pascal, xi
precondition, xii	path, 279, 404
this, 17	end points, 404
methods, static, 322	simple, 404
minimum spanning tree, 429	Pedigree example, 280
Modula-2, xi	performance
mutator, 13	exponential, 85
mutatol, 15	linear, 83
nanosecond, 93, 115	polynomial, 83
Napster, 15	superlinear, 83
ivapotei, 10	superinical, 00

1	
PFGenerator example, 168	programming, craft of, xi
philosophy, 1–3	programs, writing large, 1
PhoneBook example, 138, 143	progress in recursion, 95
Pig Latin, 14	proof by induction, 94
PinochleCard example, 159	protected, use of keyword, 507–509
pivot, 131, 133	protection of fields, 8, 10
Player example, 314	r, -,
pointer, see also reference	queue, 220, 229–242
PokerCard example, 158	dequeue, 229
postcondition, xii, 34	enqueue, 229
postfix, 290	head, 229
precedence, operator, 282	priority, 315
precondition, xii, 34	tail, 229
PrimeGenerator example, 154	quicksort, 131–134
principle, xii, 3	QuickSort example, 131, 222
assertions, 35, 515	
code reuse, 17	RadixSort example, 135
code review, 269	random access property, 45
consistent interfaces, 51	Ratio example, 8, 254
consistent state, 191	RBSymTab example, 362
drawing pictures, 189	Reachability example, 422
equal hash codes, 386	reachability, computing, 427
fighting imperfection, 509	Reader example, 248
	record, traditional, 8
hiding opposing references, 286	
icon for, xii	Rect example, 20
interface design, 25	recursion, 81, 94–101
live enumerations, 162	Recursion example, 94, 102
most general method, 300	recursive, 94
natural interface, 319	recursive data structure, 310
overriding signatures, 256	RecursiveIterators example, 298
principled programmer, 3	RecursivePostage example, 98
progress in recursion, 96	reference, 19, 188, 189, 493
protected data, 25	null, 189
providing hash function, 385	rewriting, 56
public protection, 508	Rhoda, 203
questioning asymmetry, 201	Rhonda, 203
read-only iterator values, 211	rising edge, 337
reducing friction, 320	rotations, 354
static functions, 322	runtime, 44, 69
symmetry, 194	Tuntine, 44, 09
	scope, of identifier, 491
testing boundaries, 197	
understanding complexity, 235	search
principles, 1–3, 515–516	binary, 260
principles, abstract, xi	depth-first, 422
priority queue, 315	linear, 268
problems, importance of, 2	selection sort, 122-123
procedure, 249, see also method	SelectionSort example, 122
productions, 56	self-reference, 81, 94-106
program counter, 222	semantics, 69, 369
program, state, 34	of data structure, 6
	· · · · · · · · · · · · · · · · · · ·

implementation independent, 181	Association, 15-17
implementation specific, 182	BinarySearchTree, 348
Seuss, Dr., 14	BinarySearchTree, 344
shallow copy, 311	BinaryTree, 284 , 291 , 300 , 392
Shelley, Percy Bysshe, 513	BinaryTreeNode, 355
signature, 19, 149	BTInorderIterator, 294
Slobodkina, Esphyr, 343	BTLevelorderIterator, 296
solution	BTPostorderIterator, 295
self-referential, 94	BTPreorderIterator, 291
sort	CaselessComparator, 141
bucket, 134	ChainedHashTable, 384
radix, 134–138	CircularList, 207
Sort example, 265	Comparable, 254
sorting, 119–144, 264, 345, 424	Comparable Association, 256
objects, 138–140	Comparator, 141
vectors, 143–144	documentation of, 2
Soundex, 401	DoublyLinkedList, 203
splay operation, 354	DoublyLinkedNode, 203
splay tree, 354	downloading, xii, 1
sqrt example, 34	Edge, 407
stability	Enumeration, 161
of sort, 146	Graph, 404
stack, 220–229	${ t GraphListDirected,420}$
trace of, 36	${ t GraphListUndirected, 419}$
start string, 56	${ t GraphListVertex}, 416$
state, 222	GraphMatrix, 408, 411, 412, 414
program, 34	GraphMatrixDirected, 409, 412,
structure, 150	413
string	GraphMatrixUndirected, 413,
counted, 7	414, 416
end mark, 7	Hashtable, 375, 383
terminated, 7	icon for, xii
StringReader example, 43	Iterator, 163
StringVector example, 71	Linear, 219
structure	List, xii, 180
control, 8, 161	Map, 370
data, 8	MapList, 372
deterministic, 354	Matrix, 60
dynamic, 179	MazeRunner, 242
linear, 219, 277	NaturalComparator, 266
nonlinear, 277	Node, 189
symmetric, 201	OrderedMap, 393
structure package, 11	OrderedStructure, 259
AbstractIterator, 163	OrderedVector, 259
AbstractLinear, 220	OrderedList, 267
AbstractList, 186	PriorityVector, 318
AbstractQueue, 230	PriorityQueue, 315
AbstractStructure, 391	Queue, 229
Assert, 35	QueueArray, 239
Association, $15,72$	QueueList, 234

QueueVector, 237	arity, 279
ReadStream, 494	AVL, 311
ReverseComparator, 266	binary, 279
Set, 23	binary search, 343–364
SetVector, 57	complete, 278
SinglyLinkedList, 191	degenerate, 279
SinglyLinkedListIterator, 210	degree, 279
SkewHeap, 329	expression, 282
SplayTree, 357	full, 278, 279
SplayTreeIterator, 358	height balanced, 311
Stack, 221	is a graph, 403
StackList, 227	leaf, 279
StackVector, 225	minimum spanning, 429
Structure, 2, 22	oriented, 279
Table, 393	pruning, 313
ValueIterator, 382	red-black, 361
Vector, 45, 50, 74, 96, 151, 165	root, 277
VectorIterator, 165	rotation, 354
VectorHeap, 321	splay, 354–360
Vertex, 407	sub-, 277, 279
structures	traversing expression, 282
associative, 345	trivial, 277
subclass, 409, 504	type
subroutine, see also method	conversion, 492
subtype, 409, 503–504	primitive, 491
superclass, 409	reference, 491
supertype, 504	type bound, 79
SymbolTable, 346	type parameter
SymbolTable example, 249	actual, 76
SymMap example, 369	formal, 75
symmetry, 108–110, 201	type parameters, 73
in interface, 108	type parameters, 70
is predictability, 108	Unique example, 182
SymTab example, 346	UniqueFilter example, 170
syntax, 69	user, 24
Syracuse sequence, 113	4001, 21
byracuse sequence, 115	value
table, 392–398	in association, 369
tail recursion, 98	value, comparison of, 197
the entire argument array, 70	vector, 43–64
The Phone Company, 1	capacity, 46, 50, 65
this, 17	cost of heapifying, 339
time stamp, 424	end, 47
time–space trade-off, 193	extending, 53
token, 247	extent of, 50
Token example, 248	iterator, 165–167
topological sort, 424	size, 65
TopoSort example, 426	size of, 50
totally ordered, 140	tail, 65
tree, 277–309	two-dimensional, 60
, - ,	

vertex

degree, 403 destination, 403 in-degree, 403 out-degree, 403 sink, 403 source, 403

Warshall example, 427 Warshall's algorithm, 427 Web

programming, xi resources available on, 2 White, Elwyn Brooks, 253 WordFreq example, 48 WordList example, 19, 23, 47